Implementar un filtro de media móvil rápido en Arduino


En la entrada sobre muestreo múltiple en Arduino ya introdujimos que la reducción del ruido en las mediciones va a ser una constante (y casi una obsesión) en cualquiera de nuestros proyectos de electrónica y robótica. También vimos que la solución pasa por tomar varias mediciones y emplear un algoritmo para combinar las mediciones.

Vamos empezar con la aplicación de filtros propiamente dichos, entendiendo como filtro digital a un algoritmo que nos permite combinar varios puntos de una señal muestreada para obtener un valor con mayor significación que los puntos individuales.

Existen muchos filtros digitales posibles. En esta entrada vamos a ver el filtro de media móvil, un filtro digital ampliamente utilizado porque es intuitivo, fácil de implementar y rápido de calcular.

En el filtro de media móvil tomamos los últimos N valores recibidos (a los que denominaremos «ventana») y calculamos su media. El resultado es una señal suavizada que elimina parte del ruido de alta frecuencia. El tamaño de la ventana tiene una gran influencia en el comportamiento del filtro, como veremos más adelante.

Anuncio:

El filtro de media móvil es muy sencillo de implementar ya que el cálculo de la media únicamente requiere sumar los N elementos de la ventana y dividir para N.

La eficiencia del algoritmo mejora de forma sustancial al emplear un buffer circular. La motivación es que añadir un nuevo elemento a la ventana la suma se «poco» afectada. Únicamente es necesario restar el primer valor de la ventana y sumar el nuevo valor.

Empleando un buffer circular podemos calcular el nuevo valor filtrado sin necesidad de recorrer los N elementos de la ventana, lo que mejora la eficiencia del algoritmo respecto al tamaño de la ventana de O(n) a O(1).

Pese a las ventajas del filtro de media móvil, sobre todo en cuanto a eficiencia y sencillez, por supuesto también tiene sus desventajas, principalmente relacionadas con la debilidad del uso de la media como estimador de tendencia.

En particular, el filtro de media móvil es poco estable ante la aparición de puntos espurios (puntos anómalos muy alejados del valor real). En estos casos, resulta más conveniente emplear un filtro de mediana, o una combinación de ambos.

Influencia del tamaño de la ventana

El tamaño de la ventana condiciona el comportamiento del filtro. Un valor de 1 dejaría la señal inalterada. Cuanto mayor sea el tamaño, más grande será el suavizado de la señal.

Sin embargo, aumentar el tamaño de la ventana también tiene consecuencias negativas. Por un lado, podemos eliminar componentes de la señal en las que tenemos interés (variaciones auténticas de la señal y no solo ruido). Por otro, introduce un desfase entre la señal original y la señal filtrada, dado que necesitamos acumular N elementos antes de proporcionar un valor.

Aquí tenemos los resultados de un filtro de una misma señal para una ventana de tamaño 3,

Para una ventana de tamaño 5,

Y para una ventana de tamaño 10,

El valor adecuado para el tamaño de la ventana depende totalmente del tipo de señal que tengamos (cantidad de ruido, frecuencia, etc) y de nuestro sistema (frecuencia de muestreo, fiabilidad, etc). No obstante, son habituales valores entre 3 y 10.

Implementación en Arduino

Aquí tenemos una implementación ligera de un filtro de media móvil empleando un buffer circular para almacenar los N valores de la ventana.

En el ejemplo vamos a filtrar una serie de integer desordenados que simulan una señal como la que podríamos obtener al realizar una medición. Accedemos a estos valores a través de la función GetMeasure(), que simula el proceso de adquisición de datos.

Si ejecutamos el código veremos el siguiente resultado del valor original y del valor filtrado.

Si empleáis el Serial Plotter del IDE estándar de Arduino podréis ver fácilmente la gráfica de los valores.

Filtro de media móvil en una librería

¿Y si lo metemos en una librería para que sea más cómodo de usar? Por supuesto que sí, aquí una librería MeanFilter para Arduino. ¡A disfrutarlo!

Si te ha gustado esta entrada y quieres leer más sobre Arduino puedes consultar la sección
tutoriales de Arduino

Anuncio:

Previous Librería Arduino Circular Buffer
Next Librería Arduino Mean Filter
1000
1 Comment threads
1 Thread replies
0 Followers
 
Most reacted comment
Hottest comment thread
2 Comment authors
newest oldest
Antonio

Hola estoy intentando utilizar tu librería pero no comprendo qué debo de hacer que en vez de que simule los datos pues que trabaje con datos reales de un sensor? Estoy trabajando con el sensor de electrocardiograma de Sparkfun obteniendo los valores analógicos por el puerto A0, cómo podría lograr que tu librería realice el filtro utilizando los datos de este sensor? Ya leí tu dos páginas sobre este tema muchísimas veces pero no me queda claro, agradecería la ayuda.